Abstract

Spin transport is crucial for future spintronic devices operating at bandwidths up to the terahertz (THz) range. In F|N thin-film stacks made of a ferro/ferrimagnetic layer F and a normal-metal layer N, spin transport is mediated by (1) spin-polarized conduction electrons and/or (2) torque between electron spins. To identify a cross-over from (1) to (2), we study laser-driven spin currents in F|Pt stacks where F consists of model materials with different degrees of electrical conductivity. For the magnetic insulators YIG, GIG and maghemite, identical dynamics is observed. It arises from the THz interfacial spin Seebeck effect (SSE), is fully determined by the relaxation of the electrons in the metal layer and provides an estimate of the spin-mixing conductance of the GIG/Pt interface. Remarkably, in the half-metallic ferrimagnet Fe3O4 (magnetite), our measurements reveal two spin-current components with opposite direction. The slower, positive component exhibits SSE dynamics and is assigned to torque-type magnon excitation of the A- and B-spin sublattices of Fe3O4. The faster, negative component arises from the pyro-spintronic effect and can consistently be assigned to ultrafast demagnetization of e-sublattice minority-spin hopping electrons. This observation supports the magneto-electronic model of Fe3O4. In general, our results provide a new route to the contact-free separation of torque- and conduction-electron-mediated spin currents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.