Abstract

Renewable energy powered electrochemical water splitting has been recognized as a sustainable and environmentally-friendly way to produce green hydrogen, which is an important vector to decarbonize the transport sector and hard-to-abate industry, able to contribute to achieving global carbon neutrality. For large-scale deployment of water electrolyzers, it is essential to develop efficient and durable electrocatalysts—one of key components determining the electrochemical performance, based on cheap and earth-abundant materials. To this end, transition metal tellurides (TMTs) have recently emerged as a promising alternative to the conventional platinum group metals for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). This review article provides a brief account of the latest development in TMT-based HER and OER catalysts, with a focus on various strategies developed to improve the catalytic performance, such as nanostructure engineering, composition engineering, and heterostructuring/hybridization. Perspectives of future research on TMT-based catalysts are also shortly outlined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.