Abstract

In the present work, the effect of transition metals (Ni, Fe, Co) doping on 2-dimensional (2D) molybdenum disulfide (MoS2) nanosheets for electrocatalytic hydrogen evolution reaction (HER) was explored. A simple and cost-effective hydrothermal method was adopted to synthesis transition metals doped MoS2 nanosheets. The morphological and spectroscopic studies evidence the formation of high-quality MoS2 nanosheets with the randomly doped metal ions. Notably, the Ni–MoS2 displayed superior HER performance with an overpotential of −0.302 V vs. reversible hydrogen electrode (RHE) (to attain the current density of 10 mA cm−2) as compared to the other transition metals doped MoS2 (Co–MoS2, Fe–MoS2). From the Nyquist plot, superior charge transport from the electrocatalyst to the electrolyte in Ni–MoS2 was realized and confirmed that Ni doping provides the necessary catalytic active sites for rapid hydrogen production. The stable performance was confirmed with the cyclic test and chronoamperometry measurement and envisaged that hydrothermally synthesized Ni–MoS2 is a highly desirable cost-effective approach for electrocatalytic hydrogen generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.