Abstract

The relationships between the activity of the cortex and that of a “specific” (n. lateralis posterior, LP) and an intralaminar thalamic nucleus (n. centralis medialis, NCM) were studied in the cat during the transition from spontaneous spindles to generalized spike and wave (SW) discharge following i.m. penicillin injection. The EEG and extracellular single-unit activity were recorded in cortex and thalamus during the spindle stage and at different intervals after penicillin until well developed SW discharges were present. Computer-generated EEG averages and histograms of single-unit activity were triggered by either peaks of cortical or thalamic EEG transients or by cortical or thalamic action potentials. In agreement with previous observations, cortical neurons increasingly fired during the spindle wave as it was transformed into the “spike” of the SW complex, while a period of neuronal silence gradually developed as the “wave” of the SW complex emerged. Similar changes developed in the thalamus, particularly in LP, either concurrently with or more often after the onset of the changes in the cortex. Most neurons in NCM, continued to fire randomly even after well developed SWs and rhythmic neuronal discharges had developed in cortex and LP. Only 4 11 NCM neurons did ultimately exhibit a rhythmic firing pattern similar to that seen in the cortex and LP. The correlation between cortical and thalamic unit activity was low during spindles, but gradually increased during the development of SW discharges. These data confirm that the cortex is the leading element in the transition from spindles to SWs. Increasingly, in the course of this transition, cortical and thalamic neuronal firing becomes more intimately phase-locked. This mutual interrelationship appears to be more pronounced between cortex and “specific” than intralaminar thalamic nuclei.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.