Abstract

An analysis method based on two-phase boundary layer analysis has been developed to study the effects of superimposed forced convection on natural convection steam–gas flow condensing along a vertical plate. The mechanism by which superimposed forced convection enhances heat transfer is evaluated: the bulk flow blows away non-condensable gases accumulating near the interface, resulting in an elevated condensation driving force. Further, this bulk flow blowing capability may be characterized by a conventional mass transfer driving potential. Results of the new model are shown to be consistent with experimental data. Finally, a simple criterion was developed to identify transition to mixed convection from natural convection steam–gas flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.