Abstract

Lead halide perovskite nanocrystals (NCs) have emerged as novel semiconductor nanostructures possessing great potential for optoelectronic, photovoltaic, and quantum information processing applications. Success in these applications requires a comprehensive understanding of the perovskite NCs' electronic structures, which mysteriously exhibit either doublet or triplet peaks of exciton luminescence at the single-particle level. Here we show that the transition from doublet- to triplet-exciton peaks can be triggered in single CsPbI3 NCs from the same batch of samples when they are stored in the ambient environment. We propose theoretically that the doublet-exciton peaks originate from two in-plane dipole moments, while the optical transition arising from the out-of-plane dipole moment becomes prominent only after the crystal-field splitting is strongly reduced by the structural transformation in the deterioration process. Furthermore, the quantum-confinement effect is strongly reinforced in the single CsPbI3 NCs with a triplet-exciton configuration, leading to enhanced Auger recombination and allowing us to extract the emission-energy dependence of the exciton-energy-level fine structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.