Abstract

This paper treats propagation of transient waves in nonstationary media, which has many applications in, for example, electromagnetics and acoustics. The underlying hyperbolic equation is a general, homogeneous, linear, first-order 2×2 system of equations. The coefficients in this system depend on one spatial coordinate and time. Furthermore, memory effects are modeled by integral kernels, which, in addition to the spatial dependence, are functions of two different time coordinates. These integrals generalize the convolution integrals, frequently used as a model for memory effects in the medium. Specifically, the scattering problem for this system of equations is addressed. This problem is solved by a generalization of the wave splitting concept, originally developed for wave propagation in media which are invariant under time translations, and by an imbedding or a Green’s functions technique. More explicitly, the imbedding equation for the reflection kernel and the Green’s functions (propagator kernels) equations are derived. Special attention is paid to the problem of nonstationary characteristics. A few numerical examples illustrate this problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.