Abstract

The problem of the transient vibration of an elastic laminated composite cylindrical shell with infinite length exposed to an underwater shock wave is solved approximately. The linear acoustic plane wave assumption and Sanders thin shell theory are adopted. The reflected-afterflow virtual-source (RAVS) procedure is used to model the fluid–structure interaction involved during the underwater shock event. For the validity of the present analysis, the response of a laminated cylindrical shell under step plane wave is first analyzed and compared with the numerical solution available in the literature. Detailed numerical results for the transient responses of the shells under an exponentially decaying underwater shock wave are presented, and the influences of fiber angle, shell radius and thickness upon the dimensionless radial velocity, mid-surface strain, 0th mode radial displacement and 1st mode radial velocity of the shells, are investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.