Abstract

Understanding the electrothermal behavior of SiC MOSFET power devices under extreme operation conditions, such as short circuits, is crucial for their application certification. However, simulating short circuits in electronic components is challenging due to the necessity of a comprehensive thermal and electrical Multiphysics model that incorporates material laws and respects elevated temperatures with broad ranges. It is also needed to model the melting of the topside Al electrode. The paper presents for the first time a 2D electrothermal FEM that simulates the thermodynamic behavior of SiC MOSFET at high temperatures transistors under short-circuit conditions, including wide-range temperature-dependent material property laws. This work models the Al phase transition by considering the apparent heat capacity method and including the latent heat absorbed during the Al solid-liquid phase change (PC). The geometric accuracy of this study provides significant added values compared to existing 1D models. It was deduced that including the temperature-dependent material laws highly impacted the results. The rise in SiC junction temperature led to a delay in the onset of Al melting. It also impacted the progression manner of the Al melting process after the formation of new melting fronts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.