Abstract

The dynamic fracture problem for a functionally graded piezoelectric material (FGPM) strip containing a penny-shaped crack parallel to the free boundaries is considered in this study. It is assumed that the electroelastic properties of the strip vary continuously along the thickness direction of the strip, and that the strip is under time-dependent electric load. Integral transform techniques and dislocation density functions are employed to reduce the problem to the solutions of a system of singular integral equations. The stress and electric displacement intensity factors versus time are presented for various values of dimensionless parameters representing the crack size, the crack location and the material nonhomogeneity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.