Abstract

Oxidative stress has been shown to underlie a diverse range of neuropathological conditions. Glutamate-induced oxidative toxicity is a well described model of oxidative stress-induced neurodegeneration that relies upon the ability of extracellular glutamate to inhibit a glutamate/cystine antiporter, which results in a depletion of intracellular cysteine and the blockade of continued glutathione synthesis. Glutathione depletion leads to a gradual toxic accumulation of reactive oxygen species. We have previously determined that glutamate-induced oxidative toxicity is accompanied by a robust increase in activation of the mitogen-activated protein kinase (MAPK) member extracellular-signal regulated kinase (ERK) and that this activation is essential for neuronal cell death. This study demonstrates that delayed ERK activation is dependent upon the activity of phosphoinositol-3 kinase (PI3K) and that transient but not sustained PI3K inhibition leads to significant protection of neurons from oxidative stress-induced neurodegeneration. Furthermore, we show that transient PI3K inhibition prevents the delayed activation of MEK-1, a direct activator of ERK, during oxidative stress. Thus, this study is the first to demonstrate a novel level of cross-talk between the PI3K and ERK pathways in cultured immature cortical neuronal cultures that contributes to the unfolding of a cell death program. The PI3K pathway, therefore, may serve opposing roles during the progression of oxidative stress in neurons, acting at distinct kinetic phases to either promote or limit a slowly developing program of cell death.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.