Abstract

The nonlinear transient response of polar and polarizable particles (macromolecules) diluted in a nonpolar solvent to a sudden change both in magnitude and in direction of a strong external dc field is considered. By averaging the underlying Langevin equation, the infinite hierarchy of differential-recurrence equations for ensemble averages of the spherical harmonics is derived for an assembly of polar and anisotropically polarizable molecules pertaining to the noninertial rotational Brownian motion. On solving this hierarchy, the relaxation functions and relaxation times appropriate to the transient dynamic Kerr effect and nonlinear dielectric relaxation are calculated. The calculations are accomplished using the matrix continued fraction method, which allows us to express exactly the solution of the infinite hierarchy of differential-recurrence relations for the first- and second-order transient responses of the ensemble averages of the spherical harmonics (relaxation functions). The results are then compared with available experimental data and solutions previously obtained for various particular cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.