Abstract

BackgroundAlthough ex vivo lung perfusion (EVLP) is a useful technique for evaluating and repairing donor lungs for transplantation, EVLP itself can lead to inflammation in the lung. Heat shock proteins (HSPs) have anti-inflammatory effects and can reduce ischemic reperfusion injury in the donor's lungs after transplantation. In this study, the effects of transient hyperthermia during EVLP on the expression of HSPs and inflammatory pathways were examined. MethodsFifteen male Sprague–Dawley rats were randomly divided into three groups: sham (n = 5), normothermic EVLP (37 °C, n = 5), and transient hyperthermia during EVLP (42 °C, n = 5). Lung function analyses regarding PaO2/FiO2 ratio, compliance, and pulmonary vascular resistance were conducted. The expression levels of HSPs and inflammatory cytokines were also evaluated. The degree of lung injury was histopathologically evaluated. Transcriptome analysis was performed on lung tissues from the sham (n = 2), normothermic EVLP (n = 2), and heat stress-EVLP (n = 2) groups. ResultsThere were no significant differences in functional or histological parameters between the three groups. The expression of HSPs had significantly increased, especially that of HSPs 40 and 60 in the heat stress EVLP group; this was consistent with the inflammatory response. Inflammatory cytokine levels were significantly higher during EVLP and intensified with transient hyperthermia. ConclusionTransient hyperthermia during EVLP has no protective effect on the donor lung graft or activation of the inflammatory pathway at the gene level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.