Abstract

Extensional, flow-induced crystallization (FIC) of a high-density polyethylene (HDPE) melt has been studied using a four-roll mill flow cell. Simultaneous measurement of the birefringence and scattering dichroism are used to quantify the crystallization process during and following transient flow deformation in planar extensional flow. Suspension of the HDPE phase as a droplet in a linear low-density polyethylene carrier phase prevents die blockage on crystallization and allows measurement of the flow kinematics. Initial crystallization rates following a transient flow deformation show a stress-strain dependence. Crystallization induction times during flow correlate with the extension rate during the transient flow deformation. Measurement of the HDPE melt steady and oscillatory flow rheological properties, along with measurements of time constants following step-shear and extensional strains, allow determination of the viscoelastic properties which enhance FIC. Parameters obtained from these experiments are used in a phenomenological model for FIC which allows qualitative and semiquantitative analysis of the data trends, particularly the relaxation behavior of the birefringence during flow cessation/crystallization. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 2165–2176, 1997

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.