Abstract

Dynamic response of multilayer circular cylindrical shells composed of hybrid composite materials subjected to lateral impulse load is studied in this paper. The boundary conditions (B.C.s) are considered to be clamped-free. Both isotropic (metal) and orthotropic (composite) layers are used simultaneously in the hybrid lamination. There is no limitation for fibre orientation. First order shear deformation theory (FSDT) and Love’s first approximation theory are utilized in the shell’s equilibrium equations. Equilibrium equations for free and forced vibration problems of the shell are solved using Galerkin method. Finally, time response of displacement components of Fibre-Metal Laminate (FML) cylindrical shells is derived using mode superposition method. The effect of lay up, material properties, fibre orientation and volume fraction of metal layers on the dynamic response of the shell are investigated. New interesting results are obtained and discussed providing a helpful insight for aircraft structure’s designers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.