Abstract
Transient dielectric functions with a 120 fs time resolution of Ge, Si, and InP were acquired from 1.7 to 3.5 eV with a femtosecond pump-probe rotating-compensator ellipsometer. The intensity of the pump laser (with 1.55, 3.10, or 4.65 eV photon energy) was adjusted to create an initial near-surface carrier density of 1020 cm−3. In Ge, there is a significant (∼15%) decrease in the E1 and E1 + Δ1 critical point absorption and a Kramers–Kronig consistent change in the refractive index because photoexcited electrons at L block these transitions and reduce their amplitudes. Only a small redshift of the E1 critical point is observed, which we attribute to lattice heating and exchange-correlation effects. Minimal changes were found for Si and InP, where electrons near Δ and Γ do not participate in interband transitions between 1.7 and 3.5 eV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.