Abstract
<para xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> In this paper, we investigate the effect of the reset-pulse parameters of a phase-change memory line cell on the electrical cell properties. By means of electrothermal finite-element simulations and measurements, the characteristics of the reset state (resistance after switching, threshold voltage, and stability of the state) are related to the physical parameters during reset switching (the temporal and spatial distribution of the temperature during switching, the evolution of the melting and molten phases, and the time that the line is molten). From a device point of view, we emphasize the following aspects: 1) Due to good thermal isolation, the line cell can be reset using a 5-ns short current pulse of limited amplitude; 2) longer pulsewidths allow lower reset current amplitudes due to the gradual heating of surrounding dielectric; 3) the reset resistance has no direct relation with the threshold voltage but is strongly related to the number of reset pulses applied to the cell; and 4) shorter pulsewidths allow extended endurance lifetimes. </para>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.