Abstract
A simplified model was derived for magnetizing force convection of oxygen gas and solved for transient characteristics of oxygen gas in a vertical open pipe. Oxygen gas in the cylindrical pipe initially flows out downward since oxygen gas is heavier than air. However, the magnetizing force works to attract the oxygen gas in the lower half of the vertical pipe, and the oxygen gas rises back to the central part of the pipe where the magnetic field is strongest. After a long time, all the oxygen gas in the pipe is replaced with air due to diffusion. This model represented moderately well the transient concentration of oxygen gas measured experimentally in a similar system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.