Abstract

For an underdamped Brownian particle in a one-dimensional periodic potential we theoretically predict three unusual transport properties: (i) A static bias force (of either sign) generates an average particle motion in the opposite direction. (ii) A small bias leads to a particle transport in the direction of the bias, but upon increasing the bias the particle velocity reverses direction. (iii) For a given bias force, the particle motion follows the direction of the force for low temperatures, but upon increasing the temperature reverses its direction. The considered model is shown to be minimal for the occurrence of these phenomena. A detailed analysis of its deterministic properties and the influence of thermal noise is carried out with numerical simulations that are complemented by analytical approximations. Intuitive explanations of the basic mechanism behind the three effects are provided; their origin is attributed to a subtle interplay between the stability of coexisting attractors, noise induced metastability, and transient chaos. An experimental system for the realization of the predicted effects is given within the Stewart-McCumber model for Josephson junctions. Suitable parameter values for which these effects can be observed are quite realistic experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.