Abstract

Particle concentration in a sitting person's breathing zone can be influenced by human movement around the person, and the transient and continuous effects may differ. In this study, a set of full-scale experiments was conducted to sample the nanoparticle concentration in the breathing zone of a sitting thermal breathing manikin (STBM). The transient fluctuation of the nanoparticle concentration was recorded continuously and analyzed. The results showed that when a manikin moved (at 1 m/s) past the STBM, the nanoparticle concentration in the STBM's breathing zone decreased and reached its lowest after the standing manikin had passed, decreasing 37.6 (±5.7) % compared with the peak value. The average concentration in the STBM's breathing zone during influence periods was 5.18 (±0.99) % less than that during non-influence Periods (NP). This finding reflected the fact that the transient inhalation (over several seconds) of the STBM may be reduced by manikin movement. On the other hand, the exposure of the STBM increased 2.88 (±1.24) % when there was a continuously moving manikin compared with the stable state in a 10-min observation. This finding may be explained by the fuller mix of indoor air and nanoparticles caused by manikin movement, as well as the increase of nanoparticle suspension time. The difference in the transient and continuous effects of the manikin movement on the STBM's exposure shows the importance of considering these effects separately in different scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.