Abstract
Abstract Understanding the influence of surface roughness in elastohydrodynamically lubricated (EHL) contacts is essential to improve durability and friction performance of machine elements employing non-conformal contacting surfaces. In this work, the transient event of a surface feature passing through a thermal EHL line contact operating under different sliding conditions is investigated with the purpose of providing a deeper understanding of surface roughness influence. This is achieved by solving the EHL problem in space and time. It was seen that sliding influences the temperature rise in the contact significantly, especially in the vicinity of the asperity. However, due to the characteristic behaviour of EHL contacts, the local temperature rise mainly influence the film thickness during exiting of inlet perturbations and the asperity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.