Abstract

A fundamental challenge for time-varying volume data analysis and visualization is the lack of capability to observe and track data change or evolution in an occlusion-free, controllable, and adaptive fashion. In this paper, we propose to organize a timevarying data set into a hierarchy of states. By deriving transition probabilities among states, we construct a global map that captures the essential transition relationships in the time-varying data. We introduce the TransGraph, a graph-based representation to visualize hierarchical state transition relationships. The TransGraph not only provides a visual mapping that abstracts data evolution over time in different levels of detail, but also serves as a navigation tool that guides data exploration and tracking. The user interacts with the TransGraph and makes connection to the volumetric data through brushing and linking. A set of intuitive queries is provided to enable knowledge extraction from time-varying data. We test our approach with time-varying data sets of different characteristics and the results show that the TransGraph can effectively augment our ability in understanding time-varying data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.