Abstract

Abstract Transgenic rice with cleavable chimeric polyprotein and single-protein gene constructs placed under the control of single maize ubiquitin promoter were generated by Agrobacterium tumefaciens-mediated transformation. The polyprotein precursor consists of a leader peptide and two different antimicrobial proteins (AMPs), Dm-AMP1 and Rs-AFP2, from the seeds of Dahlia merckii and Raphanus sativus, respectively. These genes were linked by a 16 amino acid Ib-AMP linker peptide region isolated from the seeds of Impatiens balsamina. Average expression of Dm-AMP1 and Rs-AFP2 was 8.35 ± 0.56 and 8.1 ± 0.6 2 g/mg of total soluble proteins in the leaf extracts of transgenic plants. Plants transformed with polyprotein construct showed significantly improved disease resistance against Magnaporthe oryzae and Rhizoctonia solani by 90% and 79%, respectively, as compared to untransformed plants. The plants transformed with polyprotein construct were more resistant to M. oryzae compared to plants transformed with control single-gene constructs of Dm-AMP1 and Rs-AFP2. The chimeric polyprotein was cleaved and present in equimolar concentration in transgenic rice and the individual AMPs were secreted into the extracellular space. The results of in vitro, in planta, and microscopic analyses suggest that chimeric polyprotein expression has the potential to provide broad-spectrum disease resistance in rice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.