Abstract

Granular computing is a relatively new platform for constructing, describing and processing information or knowledge. For crisp information granulation, the universe is decomposed into granules by binary relations on the universe, say, preorder, tolerance and equivalence relations. A knowledge structure is composed of all information granules induced by a relation that corresponds to the granulation. This paper establishes a novel theoretical framework for the measurement of information granularity of knowledge structures. First, two new relations between knowledge structures are introduced through the use of their respective Boolean relation matrices, where the granular equality relation is defined based on an orthogonal transformation with the transformation matrix being a permutation matrix, and the granularly finer relation is presented by combining the classical finer relation and the orthogonal transformation. Then, it is demonstrated that the simplified knowledge structure base with the granularly finer relation is a partially ordered set, which can be represented by a Hasse diagram. Subsequently, an axiomatic definition of information granularity is proposed to satisfy the constraints regarding these two relations. Moreover, a general form of the information granularity is given, and some existing measures are proved to be its special cases. Finally, as an application of the proposed measure, the attribute significance measure is developed based on the information granularity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.