Abstract
We show that there is a set of transformations that relates all of the 24 dimensional even self-dual (Niemeier) lattices, and also leads to non-lattice objects some of which can perhaps be interpreted as a basis for the construction of holomorphic conformal field theory. In the second part of this paper, we extend our observations to higher-dimensional conformal field theories build on extremal partition functions, where we generate c = 24 k theories. We argue that there exists generalizations of the c = 24 models based on Niemeier lattices and of the non-Niemeier spin-1 theories. The extremal cases have spectra decomposable into the irreducible representations of the Fischer–Griess Monster. This additional symmetry leads us to conjecture that these extremal theories, as well as the higher-dimensional analogs of the group lattice bases Niemeiers, will eventually yield to a full construction of their associated CFTs. We observe interesting periodicities in the coefficients of extremal partition functions and characters of the extremal vertex operator algebras.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.