Abstract
Research has addressed the role of martensitic transformation plasticity in the enhancement of toughness in high-strength austenitic steels, and the enhancement of formability in multiphase low-alloy sheet steels. In the austenitic steels, optimal processing has achieved a significant increase in strength level, in order to investigate the interaction of strain-induced transformation with the microvoid nucleation and shear localization mechanisms operating at ultrahigh strength levels. The degree of transformation interaction is sensitive to both strength level and degree of constraint. The stress-state dependence of transformation and fracture mechanisms has been investigated in model alloys, comparing behavior in uniaxial tension and blunt-notch tension specimens. A reformulated numerical constitutive model for transformation plasticity has allowed a more thorough analysis of transformation/fracture interactions, including local processes of microvoid nucleation. Processing of a new low alloy steel composition has been optimized to stabilize retained austenite by isothermal bainitic transformation after intercritical annealing. Results show a good correlation of uniform ductility with the austenite amount and stability, and new compositions are designed for improved stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.