Abstract

Organic afterglow materials have emerged as an important class of luminescent materials. These afterglow systems feature small rate constants of key photophysical processes, such as phosphorescence decay and nonradiative decay of triplet excited states. When coupled to other photophysical processes, these afterglow systems would give rise to intriguing photophysical behaviors. Here we report the transformation of afterglow mechanism from room-temperature phosphorescence (RTP) to thermally-activated delayed fluorescence (TADF) in intramolecular charge transfer (ICT) systems. Detailed studies reveal that the increase of the acceptor strength of ICT molecules can reduce singlet-triplet splitting energy and consequently open reverse intersystem crossing (RISC) pathway with moderate kRISC of 1–10 s−1 to harvest triplet energies, leading to the RTP-to-TADF afterglow transformation. Such observations provide deep understanding on the behaviors of organic triplets with small photophysical rate constants. Besides, these organic ICT molecules have been incorporated into aqueous emulsion systems to exhibit promising applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.