Abstract

The transformation of 3-chlorobenzoate (3CB) and acetate at initial concentrations in the wide range of 10 nM to 16 mM was studied in batch experiments with Pseudomonas sp. strain B13. Transformation rates of 3CB at millimolar concentrations could be described by Michaelis-Menten kinetics (K(infm), 0.13 mM; V(infmax), 24 nmol (middot) mg of protein(sup-1) (middot) min(sup-1)). Experiments with nanomolar and low micromolar concentrations of 3CB indicated the possible existence of two different transformation systems for 3CB. The first transformation system operated above 1 (mu)M 3CB, with an apparent threshold concentration of 0.50 (plusmn) 0.11 (mu)M. A second transformation system operated below 1 (mu)M 3CB and showed first-order kinetics (rate constant, 0.076 liter (middot) g of protein(sup-1) (middot) min(sup-1)), with no threshold concentration in the nanomolar range. A residual substrate concentration, as has been reported for some other Pseudomonas strains, could not be detected for 3CB (detection limit, 1.0 nM) in batch incubations with Pseudomonas sp. strain B13. The addition of various concentrations of acetate as a second, easily degradable substrate neither affected the transformation kinetics of 3CB nor induced a detectable residual substrate concentration. Acetate alone also showed no residual concentration (detection limit, 0.5 nM). The results presented indicate that the concentration limits for substrate conversion obtained by extrapolation from kinetic data at higher substrate concentrations may underestimate the true conversion capacity of a microbial culture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.