Abstract

Valerate esters (VAEs) commonly derived from levulinic acid (LA), which is deemed as one of the most promising biomass platform molecules, have been hailed as "valeric biofuels" in recent years. The cascade transformation of LA to VAEs consists of a series of acid- and metal-catalyzed processes alternately, in which heterogeneous bifunctional catalysts are required for better catalytic performance. The transformation pathway from LA to VAEs is presented, and bifunctional catalytic systems for the cascade transformation of LA into valeric acid (VA) and its esters, as well as one-pot conversion processes, are reviewed. Additionally, effects of metal and acid sites on the catalytic performance are discussed in detail. Impacts of and improvements to coke deposition, which is determined to be the primary reason for the reduction in catalytic activity, are also analyzed. Finally, feasible suggestions are proposed for enhanced catalytic performance and a reduction in overall costs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.