Abstract

The transformation of dl limonene (mixture of d- and l-form ~ 1:1) that came from the pyrolysis of scrap tires rubber was studied using four heteropolyacid catalysts (H3PW12O40, H3PMo12O40, H4SiW12O40 and H4PMo11VO40) supported on Q-10, SBA-15, MCM-41, and KIT-6. The catalyst activity was measured using a py/GC/FID under a nitrogen atmosphere. The active phase and support were characterized using various technical methods (XRD, Raman, TEM, N2 adsorption–desorption, NH3-TPD, and py-FTIR). The highest weak acidity and largest number of Lewis acid sites promoted the conversion of dl limonene. The isomerization reactions seemed to be more favored than disproportionation reactions. The p-cymene yield was favored, with a high weak acidity and high Lewis/Bronsted acid sites ratio. Moreover, the results show that the use of amorphous support with a higher pore size seems to promote the conversion of dl limonene and the production of p-cymene. HPA-based catalysts with Si are more favorable for converting dl limonene to p-cymene than those with P. For the HPA-based catalysts with P, the highest acidity favors the highest conversion, especially the Lewis acid sites. In this study, the isomerization reactions seem to be more favored than disproportionation reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.