Abstract

Spiroplasma eriocheiris, the cause of crab trembling disease, is a wall-less bacterium, related to Mycoplasmas, measuring 2.0–10.0 μm long. It features a helical cell shape and a unique swimming mechanism that does not use flagella; instead, it moves by switching the cell helicity at a kink traveling from the front to the tail. S. eriocheiris seems to use a novel chemotactic system that is based on the frequency of reversal swimming behaviors rather than the conventional two-component system, which is generally essential for bacterial chemotaxis. To identify the genes involved in these novel mechanisms, we developed a transformation system by using oriC plasmid harboring the tetracycline resistant gene, tetM, which is under the control of a strong promoter for an abundant protein, elongation factor-Tu. The transformation efficiency achieved was 1.6 × 10−5 colony forming unit (CFU) for 1 μg DNA, enabling the expression of the enhanced yellow fluorescent protein (EYFP).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.