Abstract

Laboratory experiments and numerical modeling were conducted to evaluate the secondary utilization of eight trace-concentration halogenated solvents in a denitrifying biologically active zone (BAZ) induced by nitrate injection into an acetate-fed porous-medium column. Results of column experiments indicated that carbon tetrachloride was removed most completely by the denitrifying BAZ, while bromoform, dibromoethane, tetrachloroethene, trichloroethene, and 1,2- and 1,3-dichlorobenzenes were removed, but to lesser degrees. 1,1,1-trichloroethane removal was slight. Compounds were removed to higher degrees when the BAZ contact time was increased. The steady-state, one-dimensional solute-transport equation was solved using an iterative finite-difference scheme and by employing a quasilinearization technique for the biofilm-reaction term. The model solved directly for the steady-state profiles of secondary substrates. One set of experimental results was used to obtain best-fit values of kinetic parameteres, which were then used to predict the removal at different liquid velocities. The model predictions correctly described all experimental trends: removal of the halogenated compounds in the BAZ, greater removal with increased BAZ contact time, and reduced specific removal rates caused by diffusion limitation in the biofilm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.