Abstract
The 3D representation of objects and scenes as a point cloud or range image has been made simple by means of sensors such as Microsoft Kinect, stereo camera or laser scanner. Various tasks, such as recognition, modeling and classification can not be performed on raw measurements because of the curse of high dimensionality, computational and algorithm complexity. Non Uniform Rational Basis Splines (NURBS) are a widely used representation technique for 3D objects in various robotics and Computer Aided Design (CAD) applications. In this paper, a similarity measurement from information theory is employed in order to recognize an object sample from a set of objects. From a NURBS model fitted to the observed point cloud, a complexity based representation is derived which is transformation invariant in the sense of Kolmogorov complexity. Experimental results on a set of 3D objects grabbed by a Kinect sensor indicates the applicability of the proposed method for object recognition tasks. Furthermore, the results of the proposed method is compared to that of some state of the art algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.