Abstract

Transformable mechanical structures can switch between distinct mechanical states. Whether this kind of structure can be self-assembled from simple building blocks at microscale is a question to be answered. In this work, we propose a self-assembly strategy for these structures based on a nematic monolayer of segmented colloidal rods with lateral cutting. By using Monte Carlo simulation, we find that rods with different cutting degrees can self-assemble into different crystals characterized by bond coordination z that varies from 3 to 6. Among these, we identify a transformable superisostatic structure with pgg symmetry and redundant bonds (z = 5). We show that this structure can support either soft bulk modes or soft edge modes depending on its Poisson's ratio, which can be tuned from positive to negative through a uniform soft deformation. We also prove that the bulk soft modes are associated with states of self-stress along the direction of zero strain during uniform soft deformation. The self-assembled transformable structures may act as mechanical metamaterials with potential applications in micromechanical engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.