Abstract

Background and Objective:Campylobacter rectus is considered as one of the bacterial species of etiological importance in periodontitis. Iron-containing proteins such as transferrin are found in periodontal sites and may serve as a source of iron for periodontopathogens. The aim of this study was to investigate the capacity of C. rectus to assimilate transferrin-bound iron to support its growth.Design: Growth studies were performed in broth media pretreated with an iron-chelating resin and supplemented with various iron sources. The uptake of iron by C. rectus was monitored using 55Fe-transferrin. Transferrin-binding activity was assessed using a microplate assay while the degradation of transferrin and iron removal was evaluated by polyacrylamide gel electrophoresis. A colorimetric assay was used to determine ferric reductase activity.Results: Holotransferrin (iron-saturated form) but not apotransferrin (iron-free form) was found to support growth of C. rectus in an iron-restricted culture medium. Incubation of holotransferrin with cells of C. rectus resulted in removal of iron from the protein. A time dependent intracellular uptake of iron by C. rectus cells from 55Fe-transferrin was demonstrated. This uptake was significantly increased when bacteria were grown under an iron-limiting condition. Cells of C. rectus did not show transferrin-binding activity or proteolytic activity toward transferrin. However, a surface-associated ferric reductase activity was demonstrated.Conclusion: To survive and multiply in periodontal sites, periodontopathogens must possess efficient iron-scavenging mechanisms. In this study, we showed the capacity of C. rectus to assimilate iron from transferrin to support its growth. The uptake of iron appears to be dependent on a ferric reductive pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.