Abstract
Ultrathin two-dimensional (2D) semiconductors are regarded as a potential channel material for low-power transistors with small subthreshold swing and low leakage current. However, their dangling bond–free surface makes it extremely difficult to deposit gate dielectrics with high-quality interface in metal-oxide-semiconductor (MOS) field-effect transistors (FETs). Here, we demonstrate a low-temperature process to transfer metal gate to 2D MoS2 for high-quality interface. By excluding extrinsic doping to MoS2 and increasing contact distance, the high–barrier height Pt-MoS2 Schottky junction replaces the commonly used MOS capacitor and eliminates the use of gate dielectrics. The MoS2 transferred metal gate (TMG) FETs exhibit sub-1 V operation voltage and a subthreshold slope close to thermal limit (60 mV/dec), owing to intrinsically high junction capacitance and the high-quality interface. The TMG and back gate enable logic functions in a single transistor with small footprint.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.