Abstract

Although building sophisticated learning agents that operate in complex environments will require learning to perform multiple tasks, most applications of reinforcement learning have focused on single tasks. In this paper I consider a class of sequential decision tasks (SDTs), called composite sequential decision tasks, formed by temporally concatenating a number of elemental sequential decision tasks. Elemental SDTs cannot be decomposed into simpler SDTs. I consider a learning agent that has to learn to solve a set of elemental and composite SDTs. I assume that the structure of the composite tasks is unknown to the learning agent. The straightforward application of reinforcement learning to multiple tasks requires learning the tasks separately, which can waste computational resources, both memory and time. I present a new learning algorithm and a modular architecture that learns the decomposition of composite SDTs, and achieves transfer of learning by sharing the solutions of elemental SDTs across multiple composite SDTs. The solution of a composite SDT is constructed by computationally inexpensive modifications of the solutions of its constituent elemental SDTs. I provide a proof of one aspect of the learning algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.