Abstract

Background aimsPathological activation and collaboration of T and B cells underlies pathogenic autoantibody responses. Existing treatments for autoimmune disease cause non-specific immunosuppression, and induction of antigen-specific tolerance remains an elusive goal. Many immunotherapies aim to manipulate the T-cell component of T–B interplay, but few directly target B cells. One possible means to specifically target B cells is the transfer of gene-engineered BM that, once engrafted, gives rise to widespread specific and tolerogenic antigen expression within the hematopoietic system. MethodsGene-engineered bone marrow encoding ubiquitous ovalbumin expression was transferred after low-dose (300-cGy) immune-preserving irradiation. B-cell responsiveness was monitored by analyzing ovalbumin-specific antibody production after immunization with ovalbumin/complete Freund's adjuvant. Ovalbumin-specific B cells and their response to immunization were analyzed using multi-tetramer staining. When antigen-encoding bone marrow was transferred under immune-preserving conditions, cognate antigen-specific B cells were purged from the recipient's preexisting B-cell repertoire and the repertoire that arose after bone marrow transfer. ResultsOVA-specific B-cell deletion was apparent within the established host B-cell repertoire as well as that developing after gene-engineered bone marrow transfer. OVA-specific antibody production was substantially inhibited by transfer of OVA-encoding BM and activation of OVA-specific B cells, germinal center formation and subsequent OVA-specific plasmablast differentiation were all inhibited. Low levels of gene-engineered bone marrow chimerism were sufficient to limit antigen-specific antibody production. ResultsThese data show that antigen-specific B cells within an established B-cell repertoire are susceptible to de novo tolerance induction, and this can be achieved by transfer of gene-engineered bone marrow. This adds further dimensions to the utility of antigen-encoding bone marrow transfer as an immunotherapeutic tool.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.