Abstract

Schizophrenia (SZ) is a severe disorder of the human brain which disturbs behavioral characteristics such as interruption in thinking, memory, perception, speech and other living activities. If the patient suffering from SZ is not diagnosed and treated in the early stages, damage to human behavioral abilities in its later stages could become more severe. Therefore, early discovery of SZ may help to cure or limit the effects. Electroencephalogram (EEG) is prominently used to study brain diseases such as SZ due to having high temporal resolution information, and being a noninvasive and inexpensive method. This paper introduces an automatic methodology based on transfer learning with deep convolutional neural networks (CNNs) for the diagnosis of SZ patients from healthy controls. First, EEG signals are converted into images by applying a time-frequency approach called continuous wavelet transform (CWT) method. Then, the images of EEG signals are applied to the four popular pre-trained CNNs: AlexNet, ResNet-18, VGG-19 and Inception-v3. The output of convolutional and pooling layers of these models are used as deep features and are fed into the support vector machine (SVM) classifier. We have tuned the parameters of SVM to classify SZ patients and healthy subjects. The efficiency of the proposed method is evaluated on EEG signals from 14 healthy subjects and 14 SZ patients. The experiments showed that the combination of frontal, central, parietal, and occipital regions applied to the ResNet-18-SVM achieved best results with accuracy, sensitivity and specificity of 98.60% ± 2.29, 99.65% ± 2.35 and 96.92% ± 2.25, respectively. Therefore, the proposed method as a diagnostic tool can help clinicians in detection of the SZ patients for early diagnosis and treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.