Abstract

Human-robot collaboration (HRC) is critical to today’s tendency towards high-flexible assembly in manufacturing. Human action recognition, as one of the core prerequisites for HRC, enables industrial robots to understand human intentions and to execute planning adaptively. However, existing deep learning-based action recognition methods rely heavily on a huge amount of annotation data, which may not be effective or realistic in practice. Therefore, a transfer learning-enabled action recognition approach is proposed in this research to facilitate robot reactive control in HRC assembly. Meanwhile, a decision-making mechanism for robotic planning is introduced as well. Lastly, the proposed approach is evaluated in an aircraft bracket assembly scenario to reveal its significance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.