Abstract
This paper deals with the transfer alignment problem of strap-down inertial navigation systems (SDINS), using electro-magnetic (EM) log velocity information and gyrocompass attitude information of the ship. Major error sources for velocity and attitude matching are lever-arm effect, measurement time-delay, and ship-body flexure (flexibility). To reduce these alignment errors, an error compensation method based on delay state augmentation and DCM (direction cosine matrix) partial matching is devised. A linearized error model for a velocity and attitude matching transfer alignment system is devised by first linearizing the nonlinear measurement equation with respect to its time delay, and augmenting the delay state into conventional linear state equations. DCM partial matching is then properly combined with velocity matching to reduce the effects of a ship’s Y-axis flexure. The simulation results show that this method decreases azimuth alignment errors considerably.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.