Abstract

Background Early growth response factor-1 (Egr-1) controls the gene expression involved in postangioplasty restenosis. In the present study we synthesized specific catalytic DNA targeting sequences in human Egr-1 mRNA to investigate the effects on artery balloon injury. Methods The catalytic DNA, ED5, was synthesized and transfected into the arterial wall of Wistar rats using the FuGENE6 transfection reagent. The animals were euthanized at day 3, 7, 14 and 21 following artery balloon injury. Serum nitric oxide (NO), nitric oxide synthase (NOS), and endothelin (ET) levels were measured before sacrifice. Histopathological changes to the arterial tissue were evaluated by H&E staining and observed via transmission electromicroscopy. Egr-1, PCNA and TGF-β 1 expression was detected by immunohistochemistry, RT-PCR, and western-blot. Results Compared with the control groups, ED5-treated rats exhibited increased levels of both NO and NOS (p < 0.05); by contrast, plasma ET levels were decreased relative to controls ( p < 0.05). Neointimal hyperplasia (NH) was significantly reduced and vascular smooth muscle cells (VSMCs) in the neointima exhibited a general contractile phenotype. Both protein and mRNA expression of Egr-1, PCNA, and TGF-β 1 in the ED5-treated group were decreased at each time point ( p < 0.001). Conclusions ED5 may specifically inhibit Egr-1 gene expression and reduce NH after balloon injury in rats; the latter effect may be mediated by a down-regulation of TGF-β 1 and up-regulation of NOS to inhibit NH following balloon injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.