Abstract

Transdermal drug delivery systems are a promising option for the treatment of rheumatoid arthritis (RA) because they can lower systemic adverse effects of immunosuppressants. Janus kinase (JAK) inhibitors were found to be effective for the treatment of RA by inhibiting the JAK-STAT pathway and preventing autoimmune joint destruction. The aim of this study is to deliver tofacitinib (a JAK 1 and 3 inhibitor) through mannose-decorated transferosomes (MDTs) directly to inflamed joints. Transferosomes are composed of phospholipids, Cremophor A25, PEG400, Labrafac lipophile, and oleic acid to enhance the permeation of tofacitinib and control nanovesicle size (∼70-200 nm). Permeation through rat skin was evaluated, where the skin permeation of MDTs (Q24: 38.8 ± 9.82 μg/cm2) and flux (0.5311 ± 0.072 μg/cm2/h) were significantly greater than those of the uncoated transferosomes (Q24 of T1: 1.522 ± 0.329 μg/cm2, Q24 of T2: 3.5002 ± 0.998 μg/cm2, and Q24 of T3: 18.226 ± 5.25 μg/cm2). In addition, MDTs seem to permeate the skin intact, as shown by the transmission electron microscopy (TEM) images of the recipient buffer removed from the Franz diffusion cell. A histopathology assay was performed during the in vivo evaluation of MDTs in an arthritic rat model, in which, significantly less inflammation was observed when MDTs were applied directly to the joint compared to when applied to the dorsal skin and untreated arthritic joints. Furthermore, significantly lower tumor necrosis factor-α (TNFα), IL-6, and IL-1β levels (P < 0.05) were detected by enzyme-linked immunosorbent assay (ELISA) in homogenates of the joints treated with MDTs than in untreated arthritic joints. In conclusion, this study proposed effective MDTs that could deliver tofacitinib directly to inflamed joints possibly by targeting the macrophages circulating in the proximity of the site of inflammation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.