Abstract

In this study, the transcriptional response of grouper to Singapore grouper iridovirus (SGIV) stimulation was characterized using RNA sequencing. Transcriptome sequencing of three test groups in the grouper was performed using the Illumina MiSeq platform. The three test groups were a control group, which was injected with PBS buffer; a high-susceptible (HS) group, which died shortly after the SGIV injection; and a high-resistance (HR) group, which survived the SGIV injection. In total, 38,253 unigenes were generated. When the HS group was compared with the control group, 885 unigenes were upregulated and 487 unigenes were downregulated. When the HR and control groups were compared, 1114 unigenes were upregulated and 420 were downregulated, and when the HR and HS groups were compared, 1010 unigenes were upregulated and 375 were downregulated. In the KEGG analysis, two immune-related pathways, the p53 and peroxisome proliferator-activated receptor pathways, were detected with highly significant enrichment. In addition, 7465 microsatellites and 22,1569 candidate single nucleotide polymorphisms were identified from our transcriptome data. The results suggested several pathways that are associated with traits of disease susceptibility or disease resistance, and provided extensive information about novel gene sequences, gene expression profiles, and genetic markers. This may contribute to vaccine research and a breeding program against SGIV infection in grouper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.