Abstract

BackgroundDuring fresh fruit consumption, sensory texture is one factor that affects the organoleptic qualities. Chemical components of plant cell walls, including pectin, cellulose, hemicellulose and lignin, play central roles in determining the textural qualities. To explore the genes and regulatory pathways involved in fresh citrus’ perceived sensory texture, we performed mRNA-seq analyses of the segment membranes of two citrus cultivars, Shiranui and Kiyomi, with different organoleptic textures.ResultsSegment membranes were sampled at two developmental stages of citrus fruit, the beginning and end of the expansion period. More than 3000 differentially expressed genes were identified. The gene ontology analysis revealed that more categories were significantly enriched in ‘Shiranui’ than in ‘Kiyomi’ at both developmental stages. In total, 108 significantly enriched pathways were obtained, with most belonging to metabolism. A detailed transcriptomic analysis revealed potential critical genes involved in the metabolism of cell wall structures, for example, GAUT4 in pectin synthesis, CESA1, 3 and 6, and SUS4 in cellulose synthesis, CSLC5, XXT1 and XXT2 in hemicellulose synthesis, and CSE in lignin synthesis. Low levels, or no expression, of genes involved in cellulose and hemicellulose, such as CESA4, CESA7, CESA8, IRX9 and IRX14, confirmed that secondary cell walls were negligible or absent in citrus segment membranes. A chemical component analysis of the segment membranes from mature fruit revealed that the pectin, cellulose and lignin contents, and the segment membrane’s weight (% of segment) were greater in ‘Kiyomi’.ConclusionOrganoleptic quality of citrus is easily overlooked. It is mainly determined by sensory texture perceived in citrus segment membrane properties. We performed mRNA-seq analyses of citrus segment membranes to explore the genes and regulatory pathways involved in fresh citrus’ perceived sensory texture. Transcriptomic data showed high repeatability between two independent biological replicates. The expression levels of genes involved in cell wall structure metabolism, including pectin, cellulose, hemicellulose and lignin, were investigated. Meanwhile, chemical component contents of the segment membranes from mature fruit were analyzed. This study provided detailed transcriptional regulatory profiles of different organoleptic citrus qualities and integrated insights into the mechanisms affecting citrus’ sensory texture.

Highlights

  • IntroductionSensory texture is one factor that affects the organoleptic qualities

  • During fresh fruit consumption, sensory texture is one factor that affects the organoleptic qualities

  • Summary of the transcriptomic sequencing dataset and gene differential expression levels Total RNAs from eight samples were prepared and sequenced on an Illumina HiSeq 2000 platform

Read more

Summary

Introduction

Sensory texture is one factor that affects the organoleptic qualities. Chemical components of plant cell walls, including pectin, cellulose, hemicellulose and lignin, play central roles in determining the textural qualities. Plant cell walls play a central role in determining the textural quality of plant-based foods [6]. Fruit texture is primarily derived from the composition of cell walls and the middle lamella [7]. The main chemical components of plant cell walls and the middle lamella include pectin, cellulose, hemicellulose and lignin. The cell walls contain two other groups of branched polysaccharides, the pectins and hemicelluloses. Hemicelluloses are a diverse group of polysaccharides, in which xyloglucans are the prominent hemicelluloses in the primary walls of the edible vegetables and fruit of dicotyledonous plants [6]. Lignin affects the rigidity and cohesion of the walls [6]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.