Abstract

Ribosome activation and sugar metabolic process mainly act on the regulation of salt tolerance in the bioenergy crop Helianthus tuberosus L. as dissected by integrated transcriptomic and proteomic analyses. Helianthus tuberosus L. is an important halophyte plant that can survive in saline-alkali soil. It is vitally necessary to build an available genomic resource to investigate the molecular mechanisms underlying salt tolerance in H. tuberosus. De novo assembly and annotation of transcriptomes were built for H. tuberosus using a HiSeq4000 platform. 293,823 transcripts were identified and annotated into 190,567 unigenes. In addition, iTRAQ-labeled quantitative proteomics was carried out to detect global protein profiling as a response to salt stress. Comparative omics analysis showed that 5432 genes and 43 proteins were differentially expressed in H. tuberosus under salt stress, which were enriched in the following processes: carbohydrate metabolism, ribosome activation and translation, oxidation-reduction and ion binding. The reprogramming of transcript and protein works suggested that the induced activity of ribosome and sugar signaling may endue H. tuberosus with salt tolerance. With high-quality sequencing and annotation, the obtained transcriptomics and proteomics provide a robust genomic resource for dissecting the regulatory molecular mechanism of H. tuberosus in response to salt stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.