Abstract

Recent breakthroughs in next-generation sequencing technologies have led to the identification of small noncoding RNAs (sRNAs) as a new important class of regulatory molecules. In prokaryotes, sRNAs are often bound to the chaperone protein Hfq, which allows them to interact with their partner mRNA(s). We screened the genome of the zoonotic and human pathogen Brucella suis 1330 for the presence of this class of RNAs. We designed a coimmunoprecipitation strategy that relies on the use of Hfq as a bait to enrich the sample with sRNAs and eventually their target mRNAs. By deep sequencing analysis of the Hfq-bound transcripts, we identified a number of mRNAs and 33 sRNA candidates associated with Hfq. The expression of 10 sRNAs in the early stationary growth phase was experimentally confirmed by Northern blotting and/or reverse transcriptase PCR. Brucella organisms are facultative intracellular pathogens that use stealth strategies to avoid host defenses. Adaptation to the host environment requires tight control of gene expression. Recently, small noncoding RNAs (sRNAs) and the sRNA chaperone Hfq have been shown to play a role in the fine-tuning of gene expression. Here we have used RNA sequencing to identify RNAs associated with the B. suis Hfq protein. We have identified a novel list of 33 sRNAs and 62 Hfq-associated mRNAs for future studies aiming to understand the intracellular lifestyle of this pathogen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.