Abstract

Salt stress is an important factor restricting crop growth. Thus, genes related to plant responses to high salinity at the sprout stage of common bean (Phaseolus vulgaris) should be identified and characterized. In this study, on the basis of the common bean germination index, 0.4% NaCl and day 5 of the incubation period were selected as the optimal salt concentration and sampling time, respectively. Salt-tolerant and salt-sensitive plant materials suitable for the local region were selected as representative common bean materials with contrasting salt-related phenotypes. A total of 441 differentially expressed genes (DEGs) were identified by analyzing the generated RNA-seq data. The enriched Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways indicated the DEGs were associated with oxidoreductase activities and phenylpropanoid biosynthesis. Furthermore, the superoxide dismutase, peroxidase, and catalase activities and the lignin content, which are related to oxidoreductase activities and phenylpropanoid biosynthesis, were revealed to be significantly associated with common bean salt tolerance. The six DEGs with salt tolerance-related Arabidopsis thaliana homologs may be important candidate genes mediating the salt stress responses of common bean during the sprout stage. Supplemental data for this article is available online at https://doi.org/10.1080/13102818.2021.1954091 .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.