Abstract

Cadmium is an environmental pollutant with high toxicity that negatively affects plant growth and development. To understand the molecular mechanisms of plant response to cadmium stress, we have performed a genome-wide transcriptome analysis on barley plants treated with an increased concentration of cadmium. Differential gene expression analysis revealed 10,282 deregulated transcripts present in the roots and 7,104 in the shoots. Among them, we identified genes related to reactive oxygen species metabolism, cell wall formation and maintenance, ion membrane transport and stress response. One of the most upregulated genes was PLANT CADMIUM RESISTACE 2 (HvPCR2) known to be responsible for heavy metal detoxification in plants. Surprisingly, in the transcriptomic data we identified four different copies of the HvPCR2 gene with a specific pattern of upregulation in individual tissues. Heterologous expression of all five barley copies in a Cd-sensitive yeast mutant restored cadmium resistance. In addition, four HvPCR2 were located in tandem arrangement in a single genomic region of the barley 5H chromosome. To our knowledge, this is the first example showing multiplication of the PCR2 gene in plants.

Highlights

  • Cadmium (Cd) is a dangerous environmental pollutant with a high toxicity to plants and other living organisms, including humans

  • The plant damage caused by cadmium and other heavy metals comes from competition with essential mineral nutrients leading to deficient nutrition

  • As the general objective of our study was to describe the overall response to cadmium in barley, we identified higher number of differentially expressed transcripts

Read more

Summary

Introduction

Cadmium (Cd) is a dangerous environmental pollutant with a high toxicity to plants and other living organisms, including humans. Cadmium contamination of soils can cause losses in agricultural yield and present a potential health risk for people from Cd transfer through the food chain. Cadmium has no known function as a nutrient and its uptake by plants is dependent on soil concentration, bioavailability, redox potential, temperature, quantity of organic matter, and concentrations of other elements. Cd accumulation in plants affects various processes such as water and mineral uptake, photosynthesis and respiration, resulting in inhibition of growth and even death (Sanità Di Toppi and Gabbrielli, 1999). The plant damage caused by cadmium and other heavy metals comes from competition with essential mineral nutrients leading to deficient nutrition

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.