Abstract

In this study, we used RNA-seq to analyze the muscle and liver tissues of black carps (Mylopharyngodon piceus) of different growth rates from the same batch to evaluate their growth traits. We have two groups; they are the black carp group with fast-growth rate and the slow-growth rate. A total of 23,132 genes were enriched in the Gene Ontology analysis, and 285 related pathways were found in the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The KEGG pathway analysis showed significant differences in the expression of some genes involved in growth- and development-related metabolic pathways such as the FoxO signaling pathway, p53 signaling pathway, PI3K-Akt signaling pathway, apoptosis, TGF-β signaling pathway, and insulin signaling pathway. The numbers of differentially expressed genes in muscle and liver are 1913 and 1775. Nine of the differently expressed genes involved in the different growth traits and accuracy of the transcriptome data were validated using quantitative real-time PCR. We found that the expression levels of some growth-related genes were significantly higher in the fast-growth rate black carps than in the slow-growth rate black carps. The large number of transcriptome sequences obtained in this study has enriched the black carp gene resources, and the obtained differentially expressed genes and related pathway analysis provide valuable information for understanding the growth traits of the black carp.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.